Analisis Performa Model CNN dalam Klasifikasi Kebakaran dan non Kebakaran Hutan
Abstract
Full Text:
PDFReferences
A. Wijayanto, H. A. Wiraraja, and S. A. Idris, “Forest Fire and Environmental Damage: The Indonesian Legal Policy and Law Enforcement,” Unnes Law J., vol. 8, no. 1, pp. 105–132, 2022, doi: 10.15294/ulj.v7i1.52812.
M. D. Flannigan, B. J. Stocks, and B. M. Wotton, “Climate change and forest fires,” Sci. Total Environ., vol. 262, no. 3, pp. 221–229, 2000, doi: 10.1016/S0048-9697(00)00524-6.
Z. F. Abror, “KLASIFIKASI CITRA KEBAKARAN DAN NON KEBAKARAN MENGGUNAKAN CONVOLUTIONAL NEURAL NETWORK,” J. Ilm. Teknol. dan Rekayasa, vol. 24, no. 2, pp. 102–113, 2019, doi: 10.35760/tr.2019.v24i2.2389.
D. Hindarto, “Comparison Accuracy of CNN and VGG16 in Forest Fire Identification: A Case Study,” J. Comput. Networks, Archit. High Perform. Comput., vol. 6, no. 1, pp. 137–148, 2023, doi: 10.47709/cnahpc.v6i1.3371.
M. I. Fathur Rozi, N. O. Adiwijaya, and D. I. Swasono, “Identifikasi Kinerja Arsitektur Transfer Learning Vgg16, Resnet-50, Dan Inception-V3 Dalam Pengklasifikasian Citra Penyakit Daun Tomat,” J. Ris. Rekayasa Elektro, vol. 5, no. 2, p. 145, 2023, doi: 10.30595/jrre.v5i2.18050.
M. Khatama Insani and D. Budi Santoso, “Perbandingan Kinerja Model Pre-Trained CNN (VGG16, RESNET, dan INCEPTIONV3) untuk Aplikasi Pengenalan Wajah pada Sistem Absensi Karyawan,” J. Indones. Manaj. Inform. dan Komun., vol. 5, no. 3, pp. 2612–2622, 2024, [Online]. Available: https://journal.stmiki.ac.id
D. Putri Ayuni, Jasril, M. Irsyad, F. Yanto, and S. Sanjaya, “Augmentasi Data Pada Implementasi Convolutional Neural Network Arsitektur Efficientnet-B3 Untuk Klasifikasi Penyakit Daun Padi,” Zo. J. Sist. Inf., vol. 5, no. 2, pp. 239–249, 2023, doi: 10.31849/zn.v5i2.13874.
Y. Miftahuddin and F. Adani, “Sistem Klasifikasi Jenis Kupu-Kupu Menggunakan Visual Geometry Group 16,” vol. X, no. X, pp. 1–11, 2022, [Online]. Available: https://eproceeding.itenas.ac.id/index.php/fti/article/view/965
W. Hutamaputra, R. Y. Krisnabayu, M. Mawarni, N. Yudistira, and F. A. Bachtiar, “Perbandingan Convolutional Neural Network VGG16 dan ResNet34 pada Sistem Klasifikasi Sampah Botol,” J. Teknol. dan Sist. Komput., vol. 10, no. 2, pp. 136–142, 2022, doi: 10.14710/jtsiskom.2021.14045.
E. S. WAHYUNI and M. HENDRI, “Smoke and Fire Detection Base on Convolutional Neural Network,” ELKOMIKA J. Tek. Energi Elektr. Tek. Telekomun. Tek. Elektron., vol. 7, no. 3, p. 455, Sep. 2019, doi: 10.26760/elkomika.v7i3.455.
N. Huda, A. Mahiruna, W. Sulistijanti, and R. C. N. Santi, “Analisis Performa Inceptionv3 Convolutional Network Pada Klasifikasi Varietas Daun Grapevine,” J. Sains Komput. dan Teknol. Inf., vol. 5, no. 2, pp. 47–53, 2023, doi: 10.33084/jsakti.v5i2.5022.
M. Yandouzi et al., “Forest Fires Detection using Deep Transfer Learning,” Int. J. Adv. Comput. Sci. Appl., vol. 13, no. 8, pp. 268–275, 2022, doi: 10.14569/IJACSA.2022.0130832.
Y. N. Yenusi, Suryasatriya Trihandaru, and A. Setiawan, “Comparison of Convolutional Neural Network (CNN) Models in Face Classification of Papuan and Other Ethnicities,” JST (Jurnal Sains dan Teknol., vol. 12, no. 1, pp. 261–268, 2023, doi: 10.23887/jstundiksha.v12i1.46861.
Elinda Lusyana Puji Ristanti, “Analisis Dan Perbandingan Arsitektur Vgg16 Dan Mobilenetv2 Untuk Klasifikasi Dan Identifikasi Penyakit Daun Pada Tanaman Cabai Menggunakan Cnn,” J. Ilm. Sain dan Teknol., vol. 2, no. 9, pp. 216–226, 2024.
M. Alruwaili, A. Shehab, and S. Abd El-Ghany, “COVID-19 Diagnosis Using an Enhanced Inception-ResNetV2 Deep Learning Model in CXR Images,” J. Healthc. Eng., vol. 2021, no. Dl, 2021, doi: 10.1155/2021/6658058.
R. A. Saputra and F. D. Adhinata, “Model Deteksi Kebakaran Hutan dan Lahan Menggunakan Transfer Learning DenseNet201,” J. Intell. Syst. Comput., vol. 5, no. 2, pp. 65–72, 2023, doi: 10.52985/insyst.v5i2.317.
S. Arnandito and T. B. Sasongko, “Comparison of EfficientNetB7 and MobileNetV2 in Herbal Plant Species Classification Using Convolutional Neural Networks,” J. Appl. Informatics Comput., vol. 8, no. 1, pp. 176–185, 2024, doi: 10.30871/jaic.v8i1.7927.
DOI: https://doi.org/10.33365/jtk.v19i2.5121
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Fahreza Fany Dwiputra

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Jurnal Tekno Kompak
Published by Universitas Teknokrat Indonesia
Organized by Program Studi D3 Sistem Informasi Akuntansi - Universitas Teknokrat Indonesia
Jl. Zainal Abidin Pagaralam, No.9-11, Labuhanratu, Bandarlampung, Indonesia
Telepon : 0721 70 20 22
W : http://ejurnal.teknokrat.ac.id/index.php/teknokompak
E : teknokompak@teknokrat.ac.id.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Jumlah Pengunjung : View Tekno Kompak StatsCounter