Model Prediksi Harga Penutupan di Bursa Efek Indonesia dengan Menggunakan Bidirectional LSTM dan HIVE-COTE
Abstract
Full Text:
PDFReferences
M. Vijh, D. Chandola, V. A. Tikkiwal dan A. Kumar, “Stock Closing Price Prediction using Machine Learning Techniques,” International Conference on Computational Intelligence and Data Science, vol. 167, p. 599 – 606, 2020.
N.M.H. Masoud, “The Impact of Stock Market Performance upon Economic Growth,” International Journal of Economics and Financial Issues, vol. 3, no. 4, p. 788 – 798, 2017.
A. Murkute dan T. Sarode, “Forecasting market price of stock using artificial neural network,” International Journal of Computer Applications, vol. 124, no. 12, p. 11 – 15, 2017.
J. Hur, M. Raj dan Y. E. Riyanto, “Finance and trade: A cross-country empirical analysis on the impact of financial
development and asset tangibility on international trade.,” World Development, vol. 34, no. 10, p. 1728 – 1741, 2006.
L. Li, Y. Wu, Y. Ou, Q. Li, Y. Zhou dan D. Chen, “Research on machine learning algorithms and feature extraction
for time series,” IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), p. 1–5, 2017.
H. Widiputra, A. Mailangkay dan E. Gautama, “Prediksi Indeks BEI dengan Ensemble Convolutional Neural Network dan Long Short-Term Memory,” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 5, no. 3, p. 456 – 465, 2021.
M. Middlehurst, J. Large, M. Flynn, J. Lines, A. Bostrom dan A. Bagnall, “HIVE COTE 2.0: a new meta ensemble for time series,” Machine Learning, vol. 110, pp. 3211 - 3243, 2021.
R. Takdirillah, “Apa itu Machine Learning? Beserta Pengertian dan Cara Kerjanya,” Dicoding, 19 8 2020. [Online]. Available: https://www.dicoding.com/blog/machine-learning-adalah/. [Diakses 9 3 2024].
S. Ozdemir, Feature Engineering Bookcamp, Manning, 2022.
M. F. Rizkilloh dan S. Widiyanesti, “Prediksi Harga Cryptocurrency Menggunakan Algoritma Long Short Term Memory (LSTM),” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 6, no. 1, pp. 25 - 31, 2022.
S. Zahara dan S. , “Peramalan Data Indeks Harga Konsumen Berbasis Time Series Multivariate Menggunakan Deep Learning,” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 5, no. 1, pp. 24 - 30, 2021.
D. T. Hermanto, A. Setyanto dan E. T. Luthfi, “Algoritma LSTM-CNN untuk Sentimen Klasifikasi dengan Word2vec pada Media Online,” Citec Journal, vol. 8, no. 1, pp. 64 - 77, 2021.
V. Gallan, “LSTM (Long Short Term Memory),” Medium, 29 3 2023. [Online]. Available: https://medium.com/bina-nusantara-it-division/lstm-long-short-term-memory-d29779e2ebf8. [Diakses 15 3 2024].
F. Chollet, Deep Learning with Python second edition, Shelter Island, NY: Manning Publications Co., 2021.
J. Lines, S. Taylor dan A. Bagnall, “Time Series Classification with HIVE-COTE: The,” ACM Transactions on Knowledge Discovery from Data, vol. 12, no. 5, pp. 2-35, 2018.
R. D. Ayu, “Apa itu Saham? Berikut Pengertian, Fungsi, dan Tipe-tipe Investornya,” PT Tempo Inti Media Tbk, 1 1 2024. [Online]. Available: https://koran.tempo.co/read/ekonomi-dan-bisnis/486443/apa-itu-saham-berikut-pengertian-fungsi-dan-tipe-tipe-investornya. [Diakses 9 3 2024].
I. Oktavia dan K. Genjar, “Faktor-Faktor yang Mempengaruhi Harga Saham,” UNEJ e-Proceeding, pp. 414 - 422, 2018.
Stockbit, “3 Cara Menganalisa Saham Untuk Mendulang Cuan,” Stockbit, 10 9 2022. [Online]. Available: https://snips.stockbit.com/investasi/cara-menganalisa-saham. [Diakses 9 3 2024].
R. D. Ayu, “Pengertian Bursa Efek, Fungsi, Cara Kerja, dan Sejarahnya,” PT Tempo Inti Media Tbk, 3 1 2024. [Online]. Available: https://koran.tempo.co/read/ekonomi-dan-bisnis/486476/arti-bursa-efek-fungsi-cara-kerja-dan-sejarahnya. [Diakses 9 3 2024].
C. Staff, “Machine Learning in Finance: 10 Applications and Use Cases,” Coursera, 10 2 2024. [Online]. Available: https://www.coursera.org/articles/machine-learning-in-finance. [Diakses 9 3 2024].
F. Rozi dan M. B. S. Junianto, “Penerapan Machine Learning Untuk Prediksi Harga Saham PT.Telekomunikasi Indonesia Tbk Menggunakan Algoritma,” Jurnal Informatika MULTI, vol. 1, no. 1, pp. 18 - 24, 2023.
A. Arfan dan L. ETP, “Perbandingan Algoritma Long Short-Term Memory dengan SVR pada Prediksi Harga Saham di Indonesia,” PETIR: Jurnal Pengkajian dan Penerapan Teknik Informatika, vol. 13, no. 1, pp. 33 - 43, 2020.
P. A. Riyantoko, T. M. Fahruddin, K. M. Hindrayani dan E. M. Safitri, “Analisis Prediksi Harga Saham Sektor Perbankan Menggunakan Algoritma Long-Short Terms Memory (LSTM),” Seminar Nasional Informatika 2020 (SEMNASIF 2020), pp. 427 - 435, 2020.
R. Julian dan M. R. Pribadi, “Peramalan Harga Saham Pertambangan Pada Bursa Efek Indonesia (BEI) Menggunakan Long Short Term Memory (LSTM),” Jurnal Teknik Informatika dan Sistem Informasi, vol. 8, no. 3, pp. 1596 - 1606, 2021.
A. Arfan dan L. ETP, “Prediksi Harga Saham Di Indonesia Menggunakan Algoritma Long,” Seminar Nasional Teknologi Informasi dan Komunikasi STI&K (SeNTIK), vol. 3, no. 1, pp. 2581 - 2327, 2019.
C. G. K. Simatupang, W. Swastika dan T. R. Suganda, “Perancangan Aplikasi Berbasis Web untuk Prediksi Harga,” SAINSBERTEK Jurnal Ilmiah Sains & Teknologi, vol. 3, no. 1, 2022.
A. S. Namini, N. Tavakoli dan S. S. Namini, “The Performance of LSTM and BiLSTM in Forecasting Time Series,” IEEE International Conference on Big Data (Big Data), pp. 3285-3292, 2019.
D. I. Puteri, “Implementasi Long Short Term Memory (LSTM) dan Bidirectional Long Short Term Memory (BiLSTM) Dalam Prediksi Harga Saham Syariah,” EULER: Jurnal Ilmiah Matematika, Sains dan Teknologi, vol. 11, no. 1, pp. 35-43, 2023.
N. Afrianto, D. H. Fudholi dan S. Rani, “Prediksi Harga Saham Menggunakan BiLSTM dengan Faktor Sentimen Publik,” JURNAL RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 6, no. 1, pp. 41-46, 2021.
S. Raschka, “Model Evaluation, Model Selection, and Algorithm Selection in Machine Learning,” CoRR, abs/1811.12808, 2018
DOI: https://doi.org/10.33365/jtk.v19i1.4599
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Matthew Julian, Hendra Bunyamin

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Jurnal Tekno Kompak
Published by Universitas Teknokrat Indonesia
Organized by Program Studi D3 Sistem Informasi Akuntansi - Universitas Teknokrat Indonesia
Jl. Zainal Abidin Pagaralam, No.9-11, Labuhanratu, Bandarlampung, Indonesia
Telepon : 0721 70 20 22
W : http://ejurnal.teknokrat.ac.id/index.php/teknokompak
E : teknokompak@teknokrat.ac.id.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Jumlah Pengunjung : View Tekno Kompak StatsCounter