Analisis Sentimen Tweet Menggunakan Backpropagation Neural Network
Abstract
Analisis sentimen tweet berkembang sebagai sebuah kajian pada bidang Pengolahan Bahasa Alami yang bermanfaat mengetahui opini masyarakat terhadap sebuah topik tertentu secara otomatis. Pada penelitian ini kami mengajukan teknik analisis tweet kedalam tiga kelas (positif, negatif dan netral) menggunakan algoritma Backpropagation Neural Network. Input jaringan merupakan sejumlah kata terpilih yang dirangking mengunakan skor TF*IDF. Variasi praproses term dilakukan untuk menguji performa klasifikasi sentimen. Hasil pengujian menunjukkan metode yang kami ajukan berhasil melakukan klasifikasi dengan hasil terbaik dengan akurasi 78.34% dan presisi 84.21%.
Full Text:
PDFReferences
A. Agarwal, B. Xie, I. Vovsha, O. Rambow, and R. Passonneau, “Sentiment analysis of Twitter data,” Assoc. Comput. Linguist., 2011.
A. Go, R. Bhayani, and L. Huang, “Twitter Sentiment Classification using Distant Supervision,” 2009.
B. Liu, “Sentiment Analysis and Subjectivity,” 2010.
B. Pang, L. Lee, H. Rd, and S. Jose, “Thumbs up ? Sentiment Classification using Machine Learning Techniques,” 2002.
C. N. dos Santos and M. Gatti, “Deep Convolutional Neural Networks for Sentiment Analysis of Short Texts,” Coling-2014, 2014.
C. Scheible, “Unsupervised Sentiment Analysis with a Simple and Fast Bayesian Model using Part-of-Speech Feature Selection,” vol. 2012, 2012.
E. Kouloumpis, T. Wilson, and J. Moore, “Twitter sentiment analysis: The good the bad and the omg!,” Proc. Fifth Int. AAAI Conf. Weblogs Soc. Media (ICWSM 11), 2011.
G. Salton and M. McGill, Introduction to modern Information Retrieval. McGraw-Hill, 1983.
I. F. Rozi, S. Hadi, and E. Achmad, “Implementasi Opinion Mining ( Analisis Sentimen ) untuk Ekstraksi Data Opini Publik pada Perguruan Tinggi,” vol. 6, no. 1, 2012.
J. Martineau, J. Martineau, T. Finin, T. Finin, C. Fink, C. Fink, C. Piatko, C. Piatko, J. Mayfield, J. Mayfield, Z. Syed, Z. Syed, Others, and Others, “Delta TFIDF: An Improved Feature Space for Sentiment Analysis,” Proc. Second Int. Conf. Weblogs Soc. Media (ICWSM, vol. 29, no. May, 2008.
K. Ghag, “SentiTFIDF – Sentiment Classification using Relative Term Frequency Inverse Document Frequency,” vol. 5, no. 2, 2014.
P. Aliandu, “Sentiment analysis on indonesian tweet,” 2013.
P. D. Turney, “Thumbs Up or Thumbs Down ? Semantic Orientation Applied to Unsupervised Classification of Reviews,” no. July, 2002.
R. Socher, A. Perelygin, J. Y. Wu, J. Chuang, C. D. Manning, A. Y. Ng, and C. Potts, “Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank,” 2013.
S. Roa and F. Nino, “Classification of Natural Language Sentences using Neural Networks,” 2003.
T. M. Mitchell, Machine Learning. McGraw-Hill, 1997.
X. Hu, J. Tang, H. Gao, and H. Liu, “Unsupervised Sentiment Analysis with Emotional Signals,” 2013.
DOI: https://doi.org/10.33365/jti.v10i2.20
Refbacks
- There are currently no refbacks.
Copyright (c) 2021 Maulana Aziz Assuja, Saniati Saniati
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
JURNAL TEKNOINFO
Published by Universitas Teknokrat Indonesia
Organized by Prodi S1 Informatika FTIK Universitas Teknokrat Indonesia
W: http://ejurnal.teknokrat.ac.id/index.php/teknoinfo/index
E : teknoinfo@teknokrat.ac.id.
Jl. Zainal Abidin Pagaralam, No.9-11, Labuhan Ratu, Bandarlampung
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Jumlah Pengunjung : View Teknoinfo StatsCounter