Analisis Sentimen Berbasis Aspek pada Wisata Halal dengan Metode Deep Learning
Abstract
Full Text:
PDFReferences
R. S. Asa, “an Overview of the Developments of Halal Certification Laws in Malaysia, Singapore, Brunei and Indonesia,” J. Syariah, vol. 27, no. 1, pp. 173–200, 2019.
M. CrescentRating, “Global Muslim Travel Index 2019.” April, 2019.
H. El-Gohary, “Halal tourism, is it really Halal?,” Tour. Manag. Perspect., vol. 19, pp. 124–130, Jul. 2016, doi: 10.1016/j.tmp.2015.12.013.
V. Paramarta, R. R. V. K. Dewi, F. Rahmanita, S. Hidayati, and D. Sunarsi, “Halal Tourism in Indonesia: Regional Regulation and Indonesian Ulama Council Perspective,” Int. J. Criminol. Sociol., vol. 10, pp. 497–505, 2021.
B. Liu, “Sentiment Analysis and Opinion Mining,” Synth. Lect. Hum. Lang. Technol., vol. 5, no. 1, pp. 1–167, May 2012, doi: 10.2200/S00416ED1V01Y201204HLT016.
L. Zhang, S. Wang, and B. Liu, “Deep learning for sentiment analysis: A survey,” WIREs Data Min. Knowl. Discov., vol. 8, no. 4, p. e1253, Jul. 2018, doi: 10.1002/widm.1253.
A. Feizollah, S. Ainin, N. B. Anuar, N. A. B. Abdullah, and M. Hazim, “Halal Products on Twitter: Data Extraction and Sentiment Analysis Using Stack of Deep Learning Algorithms,” IEEE Access, vol. 7, pp. 83354–83362, 2019, doi: 10.1109/ACCESS.2019.2923275.
S. Ainin, A. Feizollah, N. B. Anuar, and N. A. Abdullah, “Sentiment analyses of multilingual tweets on halal tourism,” Tour. Manag. Perspect., vol. 34, p. 100658, Apr. 2020, doi: 10.1016/j.tmp.2020.100658.
R. A. N. Nayoan, A. F. Hidayatullah, and D. H. Fudholi, “Convolutional Neural Networks for Indonesian Aspect-Based Sentiment Analysis Tourism Review,” in 2021 9th International Conference on Information and Communication Technology (ICoICT), 2021, pp. 60–65.
K. Zhou and F. Long, “Sentiment Analysis of Text Based on CNN and Bi-directional LSTM Model,” in 2018 24th International Conference on Automation and Computing (ICAC), 2018, pp. 1–5, doi: 10.23919/IConAC.2018.8749069.
M. Al-Smadi, B. Talafha, M. Al-Ayyoub, and Y. Jararweh, “Using long short-term memory deep neural networks for aspect-based sentiment analysis of Arabic reviews,” Int. J. Mach. Learn. Cybern., vol. 10, no. 8, pp. 2163–2175, 2019.
N. C. Dang, M. N. Moreno-García, and F. De la Prieta, “Sentiment Analysis Based on Deep Learning: A Comparative Study,” Electronics , vol. 9, no. 3. 2020, doi: 10.3390/electronics9030483.
Y.-C. Chang, C.-H. Ku, and C.-H. Chen, “Using deep learning and visual analytics to explore hotel reviews and responses,” Tour. Manag., vol. 80, p. 104129, 2020, doi: https://doi.org/10.1016/j.tourman.2020.104129.
M. Rhanoui, M. Mikram, S. Yousfi, and S. Barzali, “A CNN-BiLSTM model for document-level sentiment analysis,” Mach. Learn. Knowl. Extr., vol. 1, no. 3, pp. 832–847, 2019.
P. M. Sosa, “Twitter sentiment analysis using combined LSTM-CNN models,” Eprint Arxiv, pp. 1–9, 2017.
B. S. Lakshmi, P. S. Raj, and R. R. Vikram, “Sentiment analysis using deep learning technique CNN with KMeans,” Int. J. pure Appl. Math., vol. 114, no. 11, pp. 47–57, 2017.
S. Minaee, E. Azimi, and A. Abdolrashidi, “Deep-sentiment: Sentiment analysis using ensemble of cnn and bi-lstm models,” arXiv Prepr. arXiv1904.04206, 2019.
DOI: https://doi.org/10.33365/jti.v16i2.1516
Refbacks
- There are currently no refbacks.
Copyright (c) 2022 Risca Naquitasia, Dhomas Hatta Fudholi, Lizda Iswari

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
JURNAL TEKNOINFO
Published by Universitas Teknokrat Indonesia
Organized by Prodi S1 Informatika FTIK Universitas Teknokrat Indonesia
W: http://ejurnal.teknokrat.ac.id/index.php/teknoinfo/index
E : teknoinfo@teknokrat.ac.id.
Jl. Zainal Abidin Pagaralam, No.9-11, Labuhan Ratu, Bandarlampung

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Jumlah Pengunjung : View Teknoinfo StatsCounter