Comparative Analysis of Algorithms for Sensitive Outlier Protection in Privacy Preserving Data Mining
Abstract
Full Text:
PDFReferences
M. K. Gupta and P. Chandra, “A comprehensive survey of data mining,” International Journal of Information Technology, vol. 12, no. 4, pp. 1243–1257, Dec. 2020, doi: 10.1007/s41870-020-00427-7.
A. Pika, M. T. Wynn, S. Budiono, A. H. M. ter Hofstede, W. M. P. van der Aalst, and H. A. Reijers, “Privacy-Preserving Process Mining in Healthcare,” Int J Environ Res Public Health, vol. 17, no. 5, p. 1612, Mar. 2020, doi: 10.3390/ijerph17051612.
J. Dong, A. Roth, and W. J. Su, “Gaussian Differential Privacy,” J R Stat Soc Series B Stat Methodol, vol. 84, no. 1, pp. 3–37, Feb. 2022, doi: 10.1111/rssb.12454.
M. A. P. Chamikara, P. Bertok, D. Liu, S. Camtepe, and I. Khalil, “Efficient privacy preservation of big data for accurate data mining,” Inf Sci (N Y), vol. 527, pp. 420–443, Jul. 2023, doi: 10.1016/j.ins.2019.05.053.
V. S. Naresh and M. Thamarai, “Privacy‐preserving data mining and machine learning in healthcare: Applications, challenges, and solutions,” WIREs Data Mining and Knowledge Discovery, vol. 13, no. 2, Mar. 2023, doi: 10.1002/widm.1490.
J. Alvariño-Durán, B. Hernández-Ocaña, J. Hernández-Torruco, and O. Chávez-Bosquez, “Detection of Cardiac Arrhythmias Using Unsupervised Learning: A Preliminary Approach Based on PAM and CLARA Clustering Algorithms,” 2024, pp. 594–601. doi: 10.1007/978-3-031-62502-2_67.
B. Dastjerdy, A. Saeidi, and S. Heidarzadeh, “Review of Applicable Outlier Detection Methods to Treat Geomechanical Data,” Geotechnics, vol. 3, no. 2, pp. 375–396, May 2023, doi: 10.3390/geotechnics3020022.
X. Du, E. Zuo, Z. Chu, Z. He, and J. Yu, “Fluctuation-based outlier detection,” Sci Rep, vol. 13, no. 1, p. 2408, Feb. 2023, doi: 10.1038/s41598-023-29549-1.
Mehmet Akturk, “Diabetes Dataset : This dataset is originally from the N. Inst. of Diabetes & Diges. & Kidney Dis.,” Kaggle.
UCI Machine Learning, “Breast Cancer Wisconsin (Diagnostic) Data Set : Predict whether the cancer is benign or malignant,” Kaggle.
S. E. Whang, Y. Roh, H. Song, and J.-G. Lee, “Data collection and quality challenges in deep learning: a data-centric AI perspective,” The VLDB Journal, vol. 32, no. 4, pp. 791–813, Jul. 2023, doi: 10.1007/s00778-022-00775-9.
P. Sarang, “CLARANS,” 2023, pp. 237–242. doi: 10.1007/978-3-031-02363-7_14.
S. Turgay and İ. İlker, “Perturbation Methods for Protecting Data Privacy: A Review of Techniques and Applications,” Automation and Machine Learning, vol. 4, no. 2, 2023, doi: 10.23977/autml.2023.040205.
DOI: https://doi.org/10.33365/jtk.v19i2.4754
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Muhammad Ikhwan Burhan, Andi Nurfadillah Ali, A. Inayah Auliyah, Muhaimin Hading

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Jurnal Tekno Kompak
Published by Universitas Teknokrat Indonesia
Organized by Program Studi D3 Sistem Informasi Akuntansi - Universitas Teknokrat Indonesia
Jl. Zainal Abidin Pagaralam, No.9-11, Labuhanratu, Bandarlampung, Indonesia
Telepon : 0721 70 20 22
W : http://ejurnal.teknokrat.ac.id/index.php/teknokompak
E : teknokompak@teknokrat.ac.id.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Jumlah Pengunjung : View Tekno Kompak StatsCounter