Non-Destructive Classification Model of Pineapple Sweetness Level

Nunu Nugraha Purnawan, Dwi Vernanda, Tri Herdiawan Apandi, Zatin Niqotaini

Abstract


This research focuses on the development of a non-destructive classification model for determining the sweetness level of pineapples using Internet of Things (IoT) technology and the K-Nearest Neighbor (KNN) algorithm. The main goal of this study is to assess the sweetness of pineapples without damaging the fruit, which is a common issue in traditional sweetness measurement methods, such as using a refractometer that requires pineapple juice. Subang Regency was selected as the sampling location because it is one of the largest pineapple-producing areas in West Java. There are three primary markets for pineapple distribution in the region: supermarkets, processing industries, and traditional markets, each with different sweetness standards.A total of 500 pineapples were used in this study, with 450 samples used for training data and 50 samples for testing data. The research utilized a TCS230 color sensor connected to an Arduino Uno R3 to capture RGB data from the pineapple skin at a specific distance. The RGB values obtained were then processed using the KNN algorithm to predict the sweetness level of pineapples based on Brix categories: high (14-17 Brix), medium (10-13 Brix), and low (<10 Brix).After acquiring the RGB values, the data was processed to produce a valid classification of the pineapple's sweetness level. Testing was conducted using a confusion matrix, which provided metrics such as accuracy, precision, and recall. The results showed that the developed KNN model successfully classified pineapples with an accuracy of 72%, meaning that the majority of predictions made by the model matched the actual sweetness level of the pineapples.This non-destructive approach offers significant advantages over traditional methods, as it not only preserves the integrity of the pineapple but also improves efficiency in terms of time and resources. The use of IoT technology and machine learning, such as KNN, has proven to provide a more practical and accurate solution for farmers and industry players in maintaining pineapple quality and enhancing the efficiency of distribution to various markets.

Full Text:

PDF

References


M. Rizzo, M. Marcuzzo, A. Zangari, A. Gasparetto, dan A. Albarelli, “Fruit ripeness classification: A survey,” Artificial Intelligence in Agriculture, vol. 7, hlm. 44–57, Mar 2023, doi: 10.1016/J.AIIA.2023.02.004.

F. Tangguh Admojo, “Klasifikasi Aroma Alkohol Menggunakan Metode KNN,” Indonesian Journal of Data and Science , vol. 1, no. 2, hlm. 34–38, 2020.

R. Manaek, Richardus Eko Indrajit, dan Erick Dazki, “Klasifikasi Kualitas Buah Pisang Berdasarkan Waktu Panen dan Tingkat Kematangan Menggunakan Metode SVM & KNN,” SATIN - Sains dan Teknologi Informasi, vol. 9, no. 2, hlm. 01–11, Des 2023, doi: 10.33372/stn.v9i2.1000.

A. Ilmi, M. Hanif Razka, D. S. Wiratomo, dan D. S. Prasvita, Klasifikasi Tingkat Kematangan Buah Apel Berdasarkan Fitur Warna Menggunakan Algoritma K-Nearest Neighbor dan Ekstraksi Warna HSV. 2021. [Daring]. Tersedia pada: https://www.kaggle.com/mbkinaci/fruit-images-for-object-detection

V. C. Wijaya dan F. Utaminingrum, “Deteksi Tingkat Kemanisan Buah Melon melalui Ekstraksi Fitur Local Binary Pattern dengan Klasifikasi K-NN berbasis Raspberry Pi 4,” Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, vol. 6, no. 1, hlm. 52–57, 2022.

S. Ditcharoen dkk., “Improving the non-destructive maturity classification model for durian fruit using near-infrared spectroscopy,” Artificial Intelligence in Agriculture, vol. 7, hlm. 35–43, Mar 2023, doi: 10.1016/J.AIIA.2023.02.002.

P. Astuti, U. Nusa Mandiri Jln Jatiwaringin Raya No, K. Cipinang Melayu Kecamatan Makasar, J. Timur, dan C. Author, “Klasifikasi Kualitas Buah Apel Dengan Algoritma K-Nearest Neighbor (K-NN) Menggunakan Bahasa Pemrograman Python,” 2024. [Daring]. Tersedia pada: https://www.kaggle.com/

B. Gupta, G. Madan, dan A. Quadir Md, “A smart agriculture framework for IoT based plant decay detection using smart croft algorithm,” Mater Today Proc, vol. 62, hlm. 4758–4763, Jan 2022, doi: 10.1016/J.MATPR.2022.03.314.

W. W. Anggoro dan I. R. Widiasari, “Perancangan dan Penerapan Kendali Lampu Ruangan Berbasis IoT (Internet of Things) Android,” Jurnal Teknik Informatika dan Sistem Informasi, vol. 8, no. 3, 2021, [Daring]. Tersedia pada: http://jurnal.mdp.ac.id

F. Aliefuddin Hamzah, R. Wahyusari, P. Studi Informatika, dan S. Tinggi Teknologi Ronggolawe ab, “J I I F K O M ( J u r n a l I l m i a h I n f o r m a t JIIFKOM (Jurnal Ilmiah Informatika & Komputer) STTR Cepu Perbandingan Perbaikan Citra Magnetic Resonance Imaging (MRI) Menggunakan Ruang Warna RGB, HSV dan YCbCr Dengan Metode Histogram Equalization dan Contrast Streching.”

V. C. Wijaya dan F. Utaminingrum, “Deteksi Tingkat Kemanisan Buah Melon melalui Ekstraksi Fitur Local Binary Pattern dengan Klasifikasi K-NN berbasis Raspberry Pi 4,” 2022. [Daring]. Tersedia pada: http://j-ptiik.ub.ac.id

A. Setiawan, “Perbandingan Penggunaan Jarak Manhattan, Jarak Euclid, dan Jarak Minkowski dalam Klasifikasi Menggunakan Metode KNN pada Data Iris,” Jurnal Sains dan Edukasi Sains, vol. 5, no. 1, hlm. 28–37, Mei 2022, doi: 10.24246/juses.v5i1p28-37.

Hanka K dan Santosa B, “Analisis Kualitas Bahan Baku Tebu Melalui Teknik Pengklasteran dan Klasifikasi Kadar Gula Sebelum Giling (Studi Kasus Pabrik Gula PT. XYZ),” JURNAL TEKNIK ITS, 2021.

R. Maulidiah, M. Muchtar, N. Aisyah Fitri, I. Asriani, M. Putri Yasmine, dan P. Studi, “Pengelompokan Data Pertumbuhan dan Kontribusi Ekonomi Indonesia Menurut Provinsi Menggunakan Metode K-Means Clustering,” Jurnal Teknologi Sistem Informasi dan Sistem Komputer TGD, hlm. 436–444, 2023, [Daring]. Tersedia pada: https://ojs.trigunadharma.ac.id/index.php/jsk/index

H. Mubarok, S. Murni, dan M. M. Santoni, Penerapan Algoritma K-Nearest Neighbor untuk Klasifikasi Tingkat Kematangan Buah Tomat Berdasarkan Fitur Warna. 2021.

Anissa Ollivia Cahya Pratiwi, “Klasifikasi Jenis Anggur Berdasarkan Bentuk Daun Menggunakan Convolutional Neural Network Dan K-Nearest Neighbor,” Jurnal Ilmiah Teknik Informatika dan Komunikasi, vol. 3, no. 2, hlm. 201–224, Jul 2023, doi: 10.55606/juitik.v3i2.535.

I. P. Putri, “Analisis Performa Metode K-Nearest Neighbor (KNN) dan Crossvalidation pada Data Penyakit Cardiovascular,” Indonesian Journal of Data and Science (IJODAS), vol. 2, no. 1, hlm. 21–28, 2021.




DOI: https://doi.org/10.33365/jtk.v19i1.4707

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Nunu Nugraha Purnawan, Dwi Vernanda, Tri Herdiawan Apandi, Zatin Niqotaini

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.


Jurnal Tekno Kompak
Published by Universitas Teknokrat Indonesia
Organized by Program Studi D3 Sistem Informasi AkuntansiUniversitas Teknokrat Indonesia
Jl. Zainal Abidin Pagaralam, No.9-11, Labuhanratu, Bandarlampung, Indonesia
Telepon : 0721 70 20 22
W : http://ejurnal.teknokrat.ac.id/index.php/teknokompak
E  : teknokompak@teknokrat.ac.id.

Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.


Jumlah Pengunjung : View Tekno Kompak StatsCounter

Flag Counter

slot gacor slot gacor hari ini slot gacor 2025 demo slot pg slot gacor slot gacor