Hyperparameter Tuning for Optimizing Stunting Classification with KNN, SVM, and Naïve Bayes Algorithms
Abstract
The purpose of this study is to illuminate and compare the performance of three classifiers, namely Naive Bayes (NB), Support Vector Machine (SVM), and K-Nearest Neighbors (KNN), in classifying stunting data. Using evaluation measures such as accuracy, precision, recall, and F1 score, the performance of each algorithm is measured before and after hyperparameter adjustment. The experimental results show that SVM provides a strong balance between precision and recall before hyperparameter adjustment, KNN excels in recall, and NB achieves the highest precision. After hyperparameter adjustment, all models show improved performance, with SVM achieving the best accuracy and F1 score. While NB remains highly precise and reduces false positives, KNN continues to win the recall. The results show that hyperparameter adjustment is critical to optimizing algorithm performance and that algorithms should be selected according to specific research objectives to maximize detection accuracy and balance recall and precision.
Full Text:
PDFReferences
Kesehat. Republik Indones., pp. 77–77, 2023, [Online]. Available: https://promkes.kemkes.go.id/materi-hasil-survei-status-gizi-indonesia-ssgi-2022.
H. Hatijar, “The Incidence of Stunting in Infants and Toddlers,” J. Ilm. Kesehat. Sandi Husada, vol. 12, no. 1, pp. 224–229, 2023, doi: 10.35816/jiskh.v12i1.1019.
P. Apriyani, A. R. Dikananda, and I. Ali, “Penerapan Algoritma K-Means dalam Klasterisasi Kasus Stunting Balita Desa Tegalwangi,” Hello World J. Ilmu Komput., vol. 2, no. 1, pp. 20–33, 2023, doi: 10.56211/helloworld.v2i1.230.
Vega Herliansyah, Roswan Latuconsina, and Ashri Dinimaharawati, “Prediksi Stunting Pada Balita Dengan Menggunakan Algoritma Klasifikasi Naïve Bayes,” e-Proceeding Eng., vol. 8, no. 5, p. 6642, 2021.
E. Prasetyo and K. Nugroho, “Optimasi Klasifikasi Data Stunting Melalui Ensemble Learning pada Label Multiclass dengan Imbalance Data,” Techno.Com, vol. 23, no. 1, pp. 1–10, 2024, doi: 10.62411/tc.v23i1.9779.
S. K. P. Loka and A. Marsal, “Perbandingan Algoritma K-Nearest Neighbor dan Naïve Bayes Classifier untuk Klasifikasi Status Gizi Pada Balita,” MALCOM Indones. J. Mach. Learn. Comput. Sci., vol. 3, no. 1, pp. 8–14, 2023, doi: 10.57152/malcom.v3i1.474.
A. Z. M S. Widodo, A. P. Kusuma, and W. D. Puspitasari, “Analisis Algoritma Naïve Bayes Classifier (Nbc),” JATI (J. Mahasiswa Teknik Informatika), vol. 7, no. 1, pp. 87–94, 2023.
A. Y. Labolo, S. Mooduto, A. Bode, and I. C. R. Drajana, “Penerapan Algoritma Spport Vector Machine dan K-Nearest Neighbor Menggunkan Feature Selection Backward Elimination Untuk Prediksi Status Penderita Stunting Pada Balita,” J. Tecnoscienza, vol. 6, no. 2, pp. 374–388, 2022, doi: 10.51158/tecnoscienza.v6i2.713.
M. Y. Titimeidara and W. Hadikurniawati, “Implementasi Metode Naïve Bayes Classifier Untuk Klasifikasi Status Gizi Stunting Pada Balita,” J. Ilm. Inform., vol. 9, no. 01, pp. 54–59, 2021, doi: 10.33884/jif.v9i01.3741
A. Putri et al., “Komparasi Algoritma K-NN, Naïve Bayes dan SVM untuk Prediksi Kelulusan Mahasiswa Tingkat Akhir,” MALCOM Indones. J. Mach. Learn. Comput. Sci., vol. 3, no. 1, pp. 20–26, 2023, doi: 10.57152/malcom.v3i1.610.
A. I. Putri, Y. Syarif, P. Jayadi, F. Arrazak, and F. N. Salisah, “Implementasi Algoritma Decision Tree dan Support Vector Machine (SVM) untuk Prediksi Risiko Stunting pada Keluarga,” MALCOM Indones. J. Mach. Learn. Comput. Sci., vol. 3, no. 2, pp. 349–357, 2024, doi: 10.57152/malcom.v3i2.1228.
M. Fluorida Fibrianda and A. Bhawiyuga, “Analisis Perbandingan Akurasi Deteksi Serangan Pada Jaringan Komputer Dengan Metode Naïve Bayes Dan Support Vector Machine (SVM),” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 2, no. 9, pp. 3112–3123, 2018, [Online]. Available: http://j-ptiik.ub.ac.id.
P. Schratz, J. Muenchow, E. Iturritxa, J. Richter, and A. Brenning, “Hyperparameter tuning and performance assessment of statistical and machine-learning algorithms using spatial data,” Ecological Modelling, Vol. 406, pp. 109-120, 2019, doi: 10.1016/j.ecolmodel.2019.06.002.
G. N. Masacgi and M. S. Rohman, “Optimasi Model Algoritma Klasifikasi menggunakan Metode Bagging pada Stunting Balita,” Edumatic J. Pendidik. Inform., vol. 7, no. 2, pp. 455–464, 2023, doi: 10.29408/edumatic.v7i2.23812.
D. Nurmalasari, T. I. Hermanto, and I. M. Nugroho, “Perbandingan Algoritma SVM , KNN dan NBC Terhadap Analisis Sentimen Aplikasi Loan Service,” J. Media., vol. 7, pp. 1521–1530, 2023, doi: 10.30865/mib.v7i3.6427.
Y. Roh, G. Heo and S. E. Whang, “A Survey on Data Collection for Machine Learning: A Big Data - AI Integration Perspective,” in IEEE Transactions on Knowledge and Data Engineering, vol. 33, no. 4, pp. 1328-1347, 1 April 2021, doi: 10.1109/TKDE.2019.2946162.
E. S. K. Tiu, Y. F. Huang, J. L. Ng, N. AlDahoul, A. N Ahmed and A. Elshafie, “An evaluation of various data pre-processing techniques with machine learning models for water level prediction,” Nat Hazards, vol. 110, pp: 121–153, 2022, doi: 10.1007/s11069-021-04939-8.
Q. H. Nguyen, HB. Ly, L. S. Ho, N. Al-Ansari, H. V. Le, V. Q. Tran, I. Prakash, and B. T. Pham, “Influence of Data Splitting on Performance of Machine Learning Models in Prediction of Shear Strength of Soil,” Math. Problems in Engineering, 2021, doi: 10.1155/2021/4832864.
Ž. Đ. Vujović, “Classification Model Evaluation Metrics,” Int. J. of Advanced Computer Science and Applications, Volume 12, No. 6, 2021.
M. R. Wayahdi, D. Syahputra, and S. Hafiz Nanda Ginting, “Evaluation of The K-Nearest Neighbor Model with K-Fold Cross Validation on Image Classification”, infokum, vol. 9, no. 1,Desember, pp. 1-6, Dec. 2020.
Salsabila, S. Martha, and W. Andani, “Komparasi Algoritma K-Nearest Neighbor Dengan Euclidean Distance Dan Manhattan Distance Untuk Klasifikasi Stunting Balita,” Bul. Ilm. Math. Stat. dan Ter., vol. 13, no. 2, pp. 285–292, 2024.
F. M. N. Akbar, “Metode KNN (K-Nearest Neighbor) untuk Menentukan Kualitas Air” Jurnal Tekno Kompak,” vol. 18, no. 1, 2024.
M. Banurea, D. Betaria Hutagaol, and O. Sihombing, “Klasifikasi Penyakit Stunting Dengan Menggunakan Algoritma Support Vector Machine Dan Random Forest,” J. TEKINKOM, vol. 6, no. 2, pp. 540–549, 2023, doi: 10.37600/tekinkom.v6i2.927.
G. Sanhaji, A. Febrianti, and Hidayat, “Aplikasi DIATECT Untuk Prediksi Penyakit Diabetes Menggunakan SVM Berbasis Web” Jurnal Tekno Kompak,” vol. 18, no. 1, 2024.
W. Agustina, M. T. Furqon, and B. Rahayudi, “Implementasi Metode Support Vector Machine (SVM) Untuk Klasifikasi Rumah Layak Huni (Studi Kasus: Desa Kidal Kecamatan Tumpang Kabupaten Malang),” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 2, no. 10, pp. 3366–3372, 2018, [Online]. Available: http://j-ptiik.ub.ac.id
W. Cholid Wahyudin, “Klasifikasi Stunting Balita Menggunakan Naïve Bayes Dengan Seleksi Fitur Forward Selection,” J. Bisnis Digit. dan Sist. Inf., vol. 1, pp. 71–74, 2020, [Online]. Available: https://ejr.stikesmuhkudus.ac.id/index.php/jikoma/article/view/1220%0Ahttps://ejr.stikesmuhkudus.ac.id/index.php/jikoma/article/viewFile/1220/760.
A. Damuri, U. Riyanto, H. Rusdianto, and M. Aminudin, “Implementasi Data Mining dengan Algoritma Naïve Bayes Untuk Klasifikasi Kelayakan Penerima Bantuan Sembako,” JURIKOM (Jurnal Ris. Komputer), vol. 8, no. 6, p. 219, 2021, doi: 10.30865/jurikom.v8i6.3655.
E. Martantoh and N. Yanih, “Implementasi Metode Naïve Bayes Untuk Klasifikasi Karakteristik Kepribadiaan Siswa Di Sekolah MTS Darussa’adah Menggunakan Php Mysql,” J. Teknol. Sist. Inf., vol. 3, no. 2, pp. 166–175, 2022, doi: 10.35957/jtsi.v3i2.2896.
Karsito and S. Santi, “Klasifikasi Kelayakan Peserta Pengajuan Kredit Rumah Dengan Algoritma Naïve Bayes Di Perumahan Azzura Residencia,” J. Teknol. Pelita Bangsa, vol. 9, pp. 43–48, 2019.
I. W. Saputro and B. W. Sari, “Uji Performa Algoritma Naïve Bayes untuk Prediksi Masa Studi Mahasiswa,” Creat. Inf. Technol. J., vol. 6, no. 1, p. 1, 2020, doi: 10.24076/citec.2019v6i1.178.
P. Romadloni, B. Adhi Kusuma, and W. Maulana Baihaqi, “Komparasi Metode Pembelajaran Mesin Untuk Implementasi Pengambilan Keputusan Dalam Menentukan Promosi Jabatan Karyawan,” JATI (Jurnal Mhs. Tek. Inform., vol. 6, no. 2, pp. 622–628, 2022, doi: 10.36040/jati.v6i2.5238.
W. I. Rahayu, C. Prianto, and E. A. Novia, “Perbandingan Algoritma K-Means dan Naïve Bayes untuk Memprediksi Prioritas Pembayaran Tagihan Rumah Sakit Berdasarkan Tingkat Kepentingan pada PT. Pertamina (Persero),” J. Tek. Inform., vol. 13, no. 2, pp. 1–8, 2021.
DOI: https://doi.org/10.33365/jtk.v19i1.4574
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Wawan Firgiawan, Dita Yustianisa, Nurrahmi Afiah Nur, Gabrelia
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Jurnal Tekno Kompak
Published by Universitas Teknokrat Indonesia
Organized by Program Studi D3 Sistem Informasi Akuntansi - Universitas Teknokrat Indonesia
Jl. Zainal Abidin Pagaralam, No.9-11, Labuhanratu, Bandarlampung, Indonesia
Telepon : 0721 70 20 22
W : http://ejurnal.teknokrat.ac.id/index.php/teknokompak
E : teknokompak@teknokrat.ac.id.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Jumlah Pengunjung : View Tekno Kompak StatsCounter