Study The SVM Kernel For Classification Of Covid-19 Vaccine Data On Twitter
Abstract
Full Text:
PDFReferences
H. Vanam and J. Retna Raj R, “Analysis of twitter data through big data based sentiment analysis approaches,” Mater. Today Proc., no. xxxx, 2021, doi: 10.1016/j.matpr.2020.11.486.
S. Styawati and K. Mustofa, “A Support Vector Machine-Firefly Algorithm for Movie Opinion Data Classification,” IJCCS (Indonesian J. Comput. Cybern. Syst., vol. 13, no. 3, p. 219, 2019, doi: 10.22146/ijccs.41302.
S. Styawati, A. Nurkholis, A. A. Aldino, S. Samsugi, E. Suryati, and R. P. Cahyono, “Sentiment Analysis on Online Transportation Reviews Using Word2Vec Text Embedding Model Feature Extraction and Support Vector Machine (SVM) Algorithm,” 2021 Int. Semin. Mach. Learn. Optim. Data Sci. ISMODE 2021, pp. 163–167, 2022, doi: 10.1109/ISMODE53584.2022.9742906.
Styawati., N. Hendrastuty, A. R. Isnain, and A. Y. Rahmadhani, “Analisis Sentimen Masyarakat Terhadap Program Kartu Prakerja Pada Twitter Dengan Metode Support Vector Machine,” J. Inform. J. Pengemb. IT, vol. 6, no. 3, pp. 150–155, 2021, [Online]. Available: http://situs.com.
Styawati, Andi Nurkholis, Zaenal Abidin, and Heni Sulistiani, “Optimasi Parameter Support Vector Machine Berbasis Algoritma Firefly Pada Data Opini Film,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 5, no. 5, pp. 904–910, 2021, doi: 10.29207/resti.v5i5.3380.
R. Tineges, A. Triayudi, and I. D. Sholihati, “Analisis Sentimen Terhadap Layanan Indihome Berdasarkan Twitter Dengan Metode Klasifikasi Support Vector Machine (SVM),” J. Media Inform. Budidarma, vol. 4, no. 3, p. 650, 2020, doi: 10.30865/mib.v4i3.2181.
A. R. Isnain et al., “Comparison of Support Vector Machine and Naïve Bayes on Twitter Data Sentiment Analysis,” J. Inform. J. Pengemb. IT, vol. 6, no. 1, pp. 56–60, 2021.
R. Joshi and R. Tekchandani, “Comparative analysis of twitter data using supervised classifiers,” Proc. Int. Conf. Inven. Comput. Technol. ICICT 2016, vol. 2016, 2016, doi: 10.1109/INVENTIVE.2016.7830089.
P. M. Kellstedt and G. D. Whitten, Data Mining: Concepts and Techniques : Concepts and Techniques. 2018.
A. Rahmansyah, O. Dewi, P. Andini, T. Hastuti, P. Ningrum, and M. E. Suryana, “Membandingkan Pengaruh Feature Selection Terhadap Algoritma Naïve Bayes dan Support Vector Machine,” Semin. Nas. Apl. Teknol. Inf., pp. 1907–5022, 2018.
D. H. Wahid and A. SN, “Peringkasan Sentimen Esktraktif di Twitter Menggunakan Hybrid TF-IDF dan Cosine Similarity,” IJCCS (Indonesian J. Comput. Cybern. Syst., vol. 10, no. 2, p. 207, 2016, doi: 10.22146/ijccs.16625.
A. Kowalczyk, “Support Vector Machines Succintctly, Syncfusion,” E-Book, vol. 2, no. 2, p. 114, 2017, [Online]. Available: www.syncfusion.com.
M. Ahmad, S. Aftab, and I. Ali, “Sentiment Analysis of Tweets using SVM,” Int. J. Comput. Appl., vol. 177, no. 5, pp. 25–29, 2017, doi: 10.5120/ijca2017915758.
DOI: https://doi.org/10.33365/jtk.v17i1.2254
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Styawati Styawati, Andi Nurkholis, Syahirul Alim, Nadiya Safitri

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Jurnal Tekno Kompak
Published by Universitas Teknokrat Indonesia
Organized by Program Studi D3 Sistem Informasi Akuntansi - Universitas Teknokrat Indonesia
Jl. Zainal Abidin Pagaralam, No.9-11, Labuhanratu, Bandarlampung, Indonesia
Telepon : 0721 70 20 22
W : http://ejurnal.teknokrat.ac.id/index.php/teknokompak
E : teknokompak@teknokrat.ac.id.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Jumlah Pengunjung : View Tekno Kompak StatsCounter