THE APPLICATION OF MACHINE LEARNING USING GOOGLE EARTH ENGINE FOR REMOTE SENSING ANALYSIS

Muhammad Iqbal Habibie

Agency for the Assessment and Application of Technology (BPPT)
Jl. M.H Thamrin No. 8 Jakarta Pusat DKI Jakarta, Indonesia
Email: muhammad.iqbal@bppt.go.id

Abstract

The spatial dimensions and temporal resolutions of the change detection analyses have been limited by traditional methodologies (i.e., desktop computing, open source). For decades, Remote Sensing (RS) have been collected large amounts of data, which are difficult to manage and analyzed using standard software packages and desktop computing resources. For this, Google developed the Google Earth Engine (GEE) cloud computing to successfully meet the issues of large data analysis. GEE is a cloud-based computing as a planetary-scale geospatial platform for Earth science data and analysis, allows these spatiotemporal constraints to be lifted and handle massive amounts of geodata over wide areas and to monitor the environment over long periods of time. We summarize the GEE data catalog’s big geospatial data such as Climate and weather for surface temperature, climate, atmospheric and weather. It also contains Imagery like Landsat, Sentinel, MODIS and High-resolution Imagery and Geophysical information contains of terrain, land cover, cropland, and other geophysical data. Furthermore, supervised machine and unsupervised machine algorithms were used for several applications for Land Use Land Cover (LULC), hydrology, urban planning, natural disasters, and climate assessments. The research describes the utilization to resolve the big data using machine learning algorithm.

Keyword: Remote Sensing, GEE, cloud-based, machine learning, geospatial data

1. INTRODUCING

The spatial dimensions and temporal resolutions of the change detection analyses have been limited by traditional methodologies (i.e., desktop computing, open source). For decades, Remote Sensing (RS) have been collected large amounts of data, which are difficult to manage and analyzed using standard software packages and desktop computing resources. For this, Google developed the Google Earth Engine (GEE) cloud computing to successfully meet the issues of large data analysis. GEE is a cloud-based computing as a planetary-scale geospatial platform for Earth science data and analysis, allows these spatiotemporal constraints to be lifted and handle massive amounts of geodata over wide areas and to monitor the environment over long periods of time [1]. GEE is presently available to registered users via two web-based platforms: Code Editor and maps. The GEE Code Editor allows users to do analysis and modification using programming (JavaScript or Python), but the maps show the current satellite images, precipitation, Data Elevation Model (DEM), etc. This platform enables users to develop and run several algorithms and rapid calculations that allow for easy global scale analysis. Users can produce systematic data products utilizing interactive apps after developing algorithms in Google Earth Engine. Overlay analysis, matrix calculations, map calculations, image processing, time-series analysis, raster & vector conversion, statistics, and other complicated geographic data analysis are all possible. GEE system that does not require application development, web programming, or HTML. Users enable accurate and timely mapping and monitoring of vegetation from year to year.

We summarize the GEE data catalog’s big geospatial data such as Climate and weather for surface temperature, climate, atmospheric and weather. It also contains Imagery like Landsat, Sentinel, MODIS and High-resolution Imagery and Geophysical information contains of terrain, land cover, cropland, and other geophysical data. Furthermore, supervised machine and unsupervised machine algorithms were used for several applications for Land Use Land Cover (LULC), hydrology, urban planning, natural disasters, and climate assessments. Previous research studies in Indonesia [2][3] suggested some implications of new research subjects [4], Analysis of Drought Potential Distribution[5][6], Potential Fishing Zones Estimation[7], and alternative technologies utilizing remote sensing [8].

In this study, we analyzed the area of interest to evaluate the land based on management parameters that limit the accessibility and can be assessed using a Google Earth Engine. The research describes the utilization to resolve the big data using machine learning algorithm.
Muara Enim Regency is one of the areas in South Sumatra Province. Geographically, it is located between 4° – 6° south latitude and 104° – 106° east longitude. The administrative area of Muara Enim Regency is divided into 20 sub-districts consisting of 326 villages/kelurahan, namely 310 villages and 16 sub-districts. The capital is in Muara Enim District. The topography of Muara Enim Regency is quite diverse, ranging from lowlands to highlands. Most of the sub-districts are in low-lying areas with an altitude of less than 100 meters above sea level (asl) which includes 20 (twenty) sub-districts, with an area of 7,058.41 km² (77.22 percent) of the area of Muara Enim Regency. Five other sub-districts are located at an altitude of more than 10 meters above sea level (masl), namely Lawang Kidul District (100-50 m asl), Tanjung Agung District (500-800 mdpl), Semende Darat Tengah District (100 m asl), Semende Darat Laut Subdistrict (500-1000 m asl) and Semende Darat Ulu Subdistrict (>100 m asl).

2. RESEARCH METHODS

Land use in Muara Enim is divided into 2 (two) major groups, namely Protected Areas and Cultivation Areas. Protected area is an area designated with the main function of protecting environmental sustainability which includes natural resources, artificial resources, and historical and cultural values of the nation in the interest of sustainable development. This area is basically an area that based on carrying capacity analysis has limitations to be developed because of the limiting factors that serve as criteria (slope, soil type, rainfall, altitude; as well as volcanic hazard zone, soil movement vulnerability zone, and water conservation zone). very high potential.

2.1. Landsat 5 TM

The datasets were used Tier 1 calibrated top-of-atmosphere (TOA) reflectance from Landsat 5 TM Collection 1. The image metadata is used to obtain the calibration coefficients. Landsat 5 Collection 1 datasets were available from January 1984 to May 2012.

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1</td>
<td>Blue</td>
<td>0.45 - 0.52 µm</td>
</tr>
<tr>
<td>B2</td>
<td>Green</td>
<td>0.52 - 0.60 µm</td>
</tr>
<tr>
<td>B3</td>
<td>Red</td>
<td>0.63 - 0.69 µm</td>
</tr>
<tr>
<td>B4</td>
<td>Near Infrared</td>
<td>0.76 - 0.90 µm</td>
</tr>
</tbody>
</table>
B5 | Shortwave Infrared 1 | 1.55 - 1.75 µm
B6 | Thermal Infrared 1 | 10.40 - 12.50 µm
B7 | Shortwave Infrared 2 | 2.08 - 2.35 µm
BQA | Band QA Bitmask

Based on the table 1, the landsat 5 TM were used.

2.2 MODIS MCD12Q1 Land Cover Type
The MODIS MCD12Q1 V6 package contains worldwide land cover types derived from six distinct categorization methods at annual intervals (2001-2016). It is calculated using MODIS Terra and Aqua reflectance data that have been supervised classified. The supervised classifications are then refined further with further post-processing that incorporates past knowledge and supplementary data.

Table 1. Dataset and Source

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC_Type1</td>
<td>Land Cover Type 1: Annual International Geosphere-Biosphere Programme (IGBP) classification</td>
</tr>
<tr>
<td>LC_Type2</td>
<td>Land Cover Type 2: Annual University of Maryland (UMD) classification</td>
</tr>
<tr>
<td>LC_Type3</td>
<td>Land Cover Type 3: Annual Leaf Area Index (LAI) classification</td>
</tr>
<tr>
<td>LC_Type4</td>
<td>Land Cover Type 4: Annual BIOME-Biogeochemical Cycles (BGC) classification</td>
</tr>
<tr>
<td>LC_Type5</td>
<td>Land Cover Type 5: Annual Plant Functional Types classification</td>
</tr>
</tbody>
</table>

2.3. Machine learning
We may train a collection of Decision Tree classifiers, each on a different random subset of the train set, to enhance our method. To create a prediction, we simply collect the forecasts of all individual trees and then forecast the class with the most votes. Random Forest is the name of this method.

3. RESULT AND DISCUSSIONS
Accordingly, we classified the landcover type from MODIS using machine learning using the random forest based on 7 bands as the input parameters. Then the classifiers were train using the confusion matrix were the validation data use 5000 sample. The results were shows the landsat 5 layer and land cover classifier layer.

3.1. Landsat 5 TM
The landsat 5 dataset were processed during January 2011 until End of December 2011 and processed with the least cloud using Google Earth Engine.
3.2 Classifier MCD12Q1 Land Cover Type
From the results, the landcover type from MODIS using machine learning using the random forest based on 7 bands as the input parameters.

3.3. Machine learning
The classifiers were train using the confusion matrix were the validation data use 5000 sample. Then we calculate the overall accuracy from the confusion matrix. It shows that the training overall accuracy is 0.893 and validation overall accuracy 0.694. Research have been done using this algorithm of random forest has better accuracy [9]. This study has improvement from the previous study [10] which has overall accuracy 0.7.
4. CONCLUSION

This study demonstrates the application of machine learning using google earth engine for remote sensing analysis. The study was analyzed in Muara Enim regency which is mostly obtained as a forest area. As we can see from the results from the land cover type, mostly the land was covered by the trees. This study can be improved to improve the machine learning application using other methods and can be validated using other satellite images and other parameters like rainfall data [11].

REFERENCES

