ANALISIS SENTIMEN MEDIA SOSIAL TWITTER PADA PERUSAHAAN UNILEVER IMBAS PERANG ISRAEL PALESTINA MENGGUNAKAN MODEL SVM

Agung Pratama

Abstract


Penelitian ini bertujuan untuk menganalisis sentimen masyarakat Indonesia terhadap Unilever pasca-kontroversi Palestina-Israel menggunakan data teks dari platform Twitter selama bulan Oktober hingga Desember 2023. Metode yang digunakan adalah pendekatan kualitatif berbasis observasi, yang memungkinkan peneliti untuk mendapatkan pemahaman mendalam tentang respons masyarakat terhadap Unilever. Data sentimen tersebut dievaluasi untuk mengukur distribusi sentimen bulanan dan pola harian, dengan fokus pada sentimen positif, negatif, dan netral. Selain itu, penelitian ini juga memperkenalkan analisis wordcloud untuk mengeksplorasi tema yang sering dibicarakan oleh masyarakat terkait Unilever. Kesimpulan dari penelitian ini mengemukakan pentingnya pemahaman lebih lanjut terhadap sentimen masyarakat terkait isu-isu politik yang sensitif, sehingga dapat diambil tindakan yang tepat dalam meresponsnya.

Full Text:

PDF

References


V. Nurcahyawati dan Z. Mustaffa, “Improving sentiment reviews classification performance using support vector machine-fuzzy matching algorithm,” Bulletin of Electrical Engineering and Informatics, vol. 12, no. 3, 2023, doi: 10.11591/eei.v12i3.4830.

S. Ounacer, D. Mhamdi, S. Ardchir, A. Daif, dan M. Azzouazi, “Customer Sentiment Analysis in Hotel Reviews Through Natural Language Processing Techniques,” International Journal of Advanced Computer Science and Applications, vol. 14, no. 1, 2023, doi: 10.14569/IJACSA.2023.0140162.

M. A. Saddam, E. K. Dewantara, dan A. Solichin, “Sentiment Analysis of Flood Disaster Management in Jakarta on Twitter Using Support Vector Machines,” Sinkron, vol. 8, no. 1, 2023, doi: 10.33395/sinkron.v8i1.12063.

B. Andrian, T. Simanungkalit, I. Budi, dan A. F. Wicaksono, Sentiment Analysis on Customer Satisfaction of Digital Banking in Indonesia,”

nternational Journal of Advanced Computer Science and Applications, vol. 13, no. 3, 2022, doi: 10.14569/IJACSA.2022.0130356.

Z. K. D. Alkayyali, S. A. Bin Idris, dan S. S. Abu-Naser, “A YSTEMATIC LITERATURE REVIEW OF DEEP AND MACHINE LEARNING LGORITHMS IN CARDIOVASCULAR DISEASES DIAGNOSIS,” J Theor Appl Inf Technol, vol. 101, no. 4, 2023.

B. P. Oyelakin, A. Adebiyi, B. Gbadamosi, A. M. Olaolu, A. esutofunmi, dan A. A. Emmanuel, “TEXT CLASSIFICATION USING RECURRENT NEURAL NETWORK AND SUPPORT VECTOR MACHINE ON A USTOMER REVIEW DATASET,” Journal of Theoretical and Applied Information Technology, vol. 100, no. 4. 2022.

A. S. Elkorany, M. Marey, K. M. Almustafa, dan Z. F. Elsharkawy, Breast Cancer Diagnosis Using Support Vector Machines Optimized by Whale Optimization and Dragonfly Algorithms,” IEEE Access, vol. 10, 2022, doi: 10.1109/ACCESS.2022.3186021.

A. B. Yilmaz, Y. S. Taspinar, dan M. Koklu, “Classification of Malicious Android Applications Using Naive Bayes and Support Vector Machine Algorithms,” International Journal of Intelligent Systems and Applications in Engineering, vol. 10, no. 2, 2022.

M. Mustasaruddin, E. Budianita, M. Fikry, dan F. Yanto, “Klasifikasi Sentiment Review Aplikasi MyPertamina Menggunakan Word Embedding FastText dan SVM (Support Vector Machine),” Jurnal Sistem Komputer dan Informatika (JSON), vol. 4, no. 3, 2023, doi: 10.30865/json.v4i3.5695.

M. Z. Ansari, M. B. Aziz, M. O. Siddiqui, H. Mehra, dan K. P. Singh, “Analysis of Political Sentiment Orientations on Twitter,” dalam Procedia Computer Science, 2020. doi: 10.1016/j.procs.2020.03.201.

A. Nurkholis, D. Alita, dan A. Munandar, “Comparison of Kernel Support Vector Machine Multi Class in PPKM Sentiment Analysis on Twitter,” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 6, no. 2, 2022, doi: 10.29207/resti.v6i2.3906.

H. Rahman, J. Tariq, M. A. Masood, A. F. Subahi, O. I. Khalaf, dan Y. Alotaibi, “Multi-Tier Sentiment Analysis of Social Media Text Using Supervised Machine Learning,” Computers, Materials and Continua, vol. 74, no. 3, 2023, doi: 10.32604/cmc.2023.033190.

T. H. J. Hidayat, Y. Ruldeviyani, A. R. Aditama, G. R. Madya, A. W. Nugraha, dan M. W. Adisaputra, “Sentiment analysis of twitter data related to Rinca Island development using Doc2Vec and SVM and logistic regression as classifier,” dalam Procedia Computer Science, 2021. doi: 10.1016/j.procs.2021.12.187.




DOI: https://doi.org/10.33365/jdmsi.v5i1.4235

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Agung Pratama

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.



Organized by: The S1 Information Systems Study Program, Faculty of Engineering and Computer Science
Published by: Universitas Teknokrat Indonesia
Website: https://ejurnal.teknokrat.ac.id/index.php/JDMSI
Email: jdmsi@teknokrat.ac.id
Address: ZA. Pagar Alam Street No. 9 -11, Labuhan Ratu, Bandar Lampung, Indonesia 35132
Creative Commons License
Article Publish in Jurnal Data Mining dan Sistem Informasi are licensed under a Creative Commons Attribution-ShareAlike 4.0 International License